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Abstract

We develop a multiscale simulation method for dense granular drainage, based on
the recently proposed spot model, where the particle packing flows by local col-
lective displacements in response to diffusing “spots” of interstitial free volume.
By comparing with discrete-element method (DEM) simulations of 55,000 spheres
in a rectangular silo, we show that the spot simulation is able to approximately
capture many features of drainage, such as packing statistics, particle mixing, and
flow profiles. The spot simulation runs two to three orders of magnitude faster than
DEM, making it an appropriate method for real-time control or optimization. We
demonstrate extensions for modeling particle heaping and avalanching at the free
surface, and for simulating the boundary layers of slower flow near walls. We show
that the spot simulations are robust and flexible, by demonstrating that they can
be used in both event-driven and fixed timestep approaches, and showing that the
elastic relaxation step used in the model can be applied much less frequently and
still create good results.
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1 Introduction

Particle-based simulation of slow, dense granular flow is needed in many en-
gineering applications, but presents a difficult computational challenge. Only
in recent years have three-dimensional simulations of frictional viscoelastic
spheres become possible using the discrete-element method (DEM) (1), but
simulations of realistic flows still require days to weeks on a parallel computer.
While this method is useful in-depth analysis, it is impractical in certain situ-
ations, such as for process control, where it may be advantageous to estimate
features of a flow in real-time, or for optimization, where a large number of
varying configurations may need to be considered.

In this paper, we develop a multiscale simulation technique that can be used
to rapidly simulate many features of dense granular drainage. The model is
simple and easy to implement, and can approximate both microscopic and
macroscopic flow features, using two to three orders of magnitude less com-
putational power than DEM. A key strength of the simulation is its ability
to model granular mixing, for which relatively few descriptions are available.
In some industrial hopper flows, where several granular materials of different
compositions are draining through a single hopper, it may be important to
estimate in real-time how much mixing is taking place. One example of where
this occurs is the pebble-bed nuclear reactor concept (2; 3), that features a
reactor core comprised of spherical fuel pebbles of diameter ∼ 6 cm that are
slowly cycled. Some designs, such as the MIT Modular Pebble-Bed Reactor
(MPBR) (4), feature an additional type of reflecting moderator pebbles, and
the amount of moderator/fuel pebble mixing has direct implications on reactor
power output and fuel burnup (5; 6). Mixing in this geometry has been inves-
tigated using DEM (7), but even simulating a single cycle of this large-scale,
three-dimensional geometry took several weeks of time on a parallel computer.

The physics of mixing in slow, dense granular flow is significantly different
from traditional models of diffusion of gases and liquids. Mixing in granular
drainage has been investigated experimentally by Choi et al. (8) using 3 cm
glass beads in a thin rectangular silo. These experiments pointed to a rate-
independence for granular diffusion: if the total drainage rate was changed,
then the amount of mixing over the course of the run would remain the same,
thus being controlled by the total deformation, as opposed to time. It was
also observed total amount of particle mixing in these experiments was very
small, on a scale of two to three orders of magnitude less than the system size.
Particles have persistent cages of neighbors, with a single particle keeping
more than 90% of its neighbors even after a large amount of flow.

A number of lattice-based models have been proposed for approximately sim-
ulating granular drainage. Perhaps the simplest is the void model (9; 10; 11)
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where particles lie on a hexagonal lattice, and move in response to voids of
empty space that are introduced at the orifice that propagate upwards through
the material according to a random walk. Taking the continuum limit of this
model shows that the mean vertical velocity vz follows a diffusion equation of
the form ∂zvz = b∂xxvz. The kinematic model (12; 13) derives this same equa-
tion purely from continuum considerations, and it leads to Gaussian velocity
profiles and a parabolic region of flow, which is in reasonable agreement with
experimental measurements (14; 15; 16). More recently, similar ideas have
been employed in cellular automata models (17; 18; 19). However, all of these
models have a fundamental problem when estimating mixing, that whenever a
particle moves from one lattice site to another, it necessarily loses contact with
many of its neighbors, violating the slow cage-breaking seen in experiment.
Indeed, a continuum analysis of diffusion in the void model shows that the
length scale associated with particle diffusion would exactly match the length
scale of the flow width b (20).

Motivated by these observations, Bazant proposed the spot model for random
packing dynamics (21; 22). In this approach, particles are held off-lattice, and
motion is mediated by “spots”, which represent a region of free interstitial
space spread across several particle diameters, as shown by the blue circle
in Fig. 1(a). When the spot moves according to the blue arrow, it induces a
small, correlated motion of all particles within range in the opposite direction.
This model is simple enough for mathematical analysis (21), and predicts the
correct magnitude for particle diffusion: since spots cause particles to move
co-operatively with their neighbors, cage-breaking occurs much less frequently.
However, simulations based on Fig. 1(a) do not enforce packing constraints,
which, over time, result in unphysical packings. In order to preserve valid
packings, a second step was proposed, whereby a small elastic relaxation is
applied, during which the particles and their nearest neighbors experience a
soft-core repulsion with each other, as shown in Fig. 1(b). This is done on a
purely geometrical basis, and no mechanical quantities such as contact forces,
energy, or momentum are considered. The net effect, as shown in Fig. 1(c),
is then a co-operative local deformation, whose mean is roughly the original
block motion.

This model formed the basis of a multiscale simulation technique that was
demonstrated by Rycroft et al. (22) to reproduce granular drainage. A DEM
drainage simulation in a rectangular silo was carried out, and a systematic pro-
cedure was then derived to fit several free parameters in the spot simulation,
based upon physical measurements from DEM (such as velocity correlation
measurements, particle diffusion, and total flow). A spot simulation was then
run by introducing spots at the orifice, and having them propagate upwards
according to a random walk. The spot simulation reproduced many features
of the granular packing, including mean velocity profiles, particle diffusion,
and velocity correlations. In addition, the simulation recreated statistical sig-
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(a) (b) (c)

Fig. 1. The mechanism for structural rearrangement in the spot model. The ran-
dom displacement of a diffusing spot of free volume (dashed circle) causes affected
particles to move as a block by an amount (a), followed by a relaxation under soft–
core repulsion forces(b); the net co-operative motion combining these two steps (c).
(Particle displacements are exaggerated for clarity.) Figure from Ref. (22).

natures of the particle packings, such as the radial distribution function g(r)
and the bond angle distribution function g3(θ).

In order to simulate the flow of a given initial packing using the spot model,
all that remains is to specify the statistical dynamics of spots. Although the
microscopic deformation of the particle packing is determined entirely by geo-
metrical constraints, the mesoscale dynamics of spots reflects overall mechan-
ical response, specific to the material. One such theoretical framework has
recently been developed by Kamrin and Bazant (23), based on the hypoth-
esis of a “stochastic flow rule” (SFR) for limit-state plasticity, where spots
perform random walks along slip lines biased by local stress imbalances upon
fluidization (localized yielding). In the case of Mohr–Coulomb (MC) plasticity
for two-dimensional granular material at incipient yield, they derive a simple
theory of spot drift, by assuming that fluidization leads to a localized change
in the friction coefficient from the static value to a lower dynamic value, which
disrupts mechanical equilibrium; the resulting force on particles affected by
the spot causes them to move in a collective fashion, thereby propelling the
spot in the opposite direction.

The MC/SFR theory provides a possible mechanical basis for the spot model,
which can be implemented in (at least) two ways: (i) The continuum limit
can be taken to obtain a drift-diffusion (Fokker–Planck) equation for the spot
density, which closes the model by connecting stresses to the mean velocity
field and particle diffusion (23), or (ii) the spot drift vector field obtained from
the stresses can be used in discrete spot-based multiscale simulations (24).
These approaches provide an appealing, unified description of some previously
distinct granular flows, notably silo drainage under gravity and shear flow in
a Couette cell with a moving, rough inner cylinder (23; 24). In the case of the
continuum model, these flows are accurately predicted by introducing only one
new parameter, the spot size (or velocity correlation length), which is obtained
from explicit measurements and not adjusted to fit velocity profiles. A recent

4



analysis of continuum variables in a wide variety of DEM simulations, however,
casts doubt on the validity of certain hypotheses in the SFR theory (25) and
points toward some more complicated phenomena that may eventually need
to be incorporated into the theory.

Regardless of the general mechanical basis, it is clear that the random-walk
based spot algorithm provides a very efficient means of approximately sim-
ulating a wide variety of hopper drainage problems. The aim of Rycroft’s
study (22) was to validate the spot microscopic mechanism as a model for
flowing random packings. In this paper, we focus instead on developing as-
pects of the model that would be useful in a practical context. We introduce
the simulation method in Sec. 2, and then demonstrate extensions that can
be used to model free surface behavior (Sec. 3) and boundary layer behavior
(Sec. 4). We also demonstrate that the spot-based simulations are robust and
flexible, showing that they can be used in both event-driven and fixed timestep
approaches, and demonstrating that the elastic relaxation step can be applied
much less frequently and while still creating very good results (Sec. 5).

2 Simulation overview

The simulations in this paper are carried out using monodisperse spheres of
diameter d in a thin three-dimensional rectangular container, that makes use
of the same geometry as in Ref. (22). The container is constructed with walls
at x = ±25d, y = ±4d, and z = 0, and the positive z direction points upwards.

As a baseline for comparison, a DEM simulation was first carried out in this
geometry, making use of the LAMMPS software package developed at San-
dia National Laboratories (26). In this simulation, particles interact according
to the Cundall–Strack contact model (27) for cohesionless particulates that
makes use of Hertzian, history-dependent contact forces. In the direction nor-
mal to a particle–particle contact, there are elastic and viscoelastic forces, and
in the tangential direction, there is a viscoelastic force, and an elastic force
that is truncated to satisfy a local Coulomb friction criterion with parame-
ter µ. Particle–wall interactions are handled with the same model, although
the friction coefficient µw is set independently. For detailed information, see
Refs. (28; 29; 22). The particles experience gravity g in the downward direc-

tion, which defines a natural time unit τ =
√

d/g. An initial packing was
created by pouring in 55,000 particles from z = 160d and allowing them to
come to rest, filling the container up to z = 110d. A drainage simulation was
then carried out by opening a circular orifice of diameter 8d in the center of
the container base, with snapshots of all particle positions being recorded at
fixed intervals of 2τ . To effectively model hard particles, the normal spring
interaction in these simulations is very stiff, requiring small timesteps to run,
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Parameter Value Fitting method

Spot diffusion rate, b 2.28d The width of the DEM flow profile

Spot/particle displacement ratio, w 399
A single particle diffusion measurement

in the top center of the container

Spot radius, rs 2.60d
Fitting a length scale to the

DEM spatial velocity correlation function

Spot insertion rate, λ 375τ−1 Overall DEM flow rate

Spot move rate, µ 28.0τ−1 Density drop during flow

Fig. 2. The five parameters used in the spot model simulations that were fitted from
DEM simulation, taken from Ref. (22).

and thus the computations were carried out in parallel on 24 processors, tak-
ing three days to simulate the complete drainage of the packing. The DEM
simulations have been shown to be in very good agreement with experimental
data (30) for a wide variety of microscopic and macroscopic measurements.

The spot simulation was implemented in C++, with the main routine being
written as part of a class that represents the entire simulation domain. For
efficiency, the class divides the simulation up into a rectangular subgrid of
regions, and keeps a separate list of position vectors of particles within each
region. When particles are added to the container, they are sorted into the
correct region. Two key routines are used to implement the spot microscopic
mechanism. The first, spot(~p,~v, rs) applies the spot motion, by moving all
particles a distance ~v that are within a distance rs of ~p. The second, relax(~p, re)
applies the elastic relaxation procedure to all particles within a distance re

of ~p. All pairs of particles are considered, and if they overlap by a distance
δ, then each particle experiences a normal repulsive displacement of δα/2.
When an overlap occurs between a particle inside the relaxation region and
one outside the relaxation region, then the outside particle is held fixed, and
the inside particle is displaced by a distance δα. Once all pairs of particles
are considered, all displacements are applied simultaneously. For this paper,
we make use of α = 0.8, and previous studies have shown that the physical
results are relatively insensitive to this parameter (22). Since the spot and
relax operations are both local, they can be carried out very efficiently, by
only testing the regions of the container which they overlap. The operations
take care of cases when particles move from one region into another.

To carry out the spot simulation of the granular drainage process, an initial
packing of particles is copied from the DEM simulation. The drainage process
is then implemented as an event-driven simulation, whereby individual spots
are introduced and moved according to exponential waiting time distributions
with parameters λ and µ respectively. Spots initially start at the orifice at ~s =
~0. When a spot at position ~s moves, its displacement ~v is randomly chosen from
one of the four vectors in V = {(±∆x,±∆y, ∆z)}. If a spot’s displacement
would cause it to come within a buffer distance dw of a wall, then ~v is truncated
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so that its position after the displacement would lie exactly dw from the wall.
The spot’s position is updated to ~s + ~v, and the microscopic mechanism is
applied at the midpoint of this step, by calling spot(~s + ~v/2,−~v/w, rs) and
then relax(~s+~v/2, re). When a spot reaches a height zmax above the top of the
packing, it is removed from consideration. This simulation approach is detailed
in the following algorithm, where the current position vectors of spots is held
in a list S that is initially set to empty:

t = 0, S = {}
while t < tfinal do

t → t− log(rand())/(λ + |S|µ)
if rand() < λ/(λ + |S|µ) then

choose ~s from S
if sz < zmax then

choose ~v from V
truncate ~v if within dp of a wall
spot(~s + ~v/2,−~v/w, rs)
relax(~s + ~v/2, re)
~s → ~s + ~v

else
delete ~s from S

end if
else

add ~0 to S
end if

end while

In the same manner as the DEM simulation, snapshots of the particles are
saved at intervals of 2τ . The parameters {∆x, ∆y, ∆z, w, rs, λ, µ} control the
speed and characteristics of the flow, and in general, appropriate values can be
determined from DEM simulation or experimental data, that can be carried
out once and then used in many simulations. Ref. (22) describes a system-
atic process for fitting these parameters from the DEM simulation based upon
physical considerations. In the current paper, we do not concentrate on the
fitting process, and make use of the same parameters from the previous study,
that are summarized in Fig. 2. Like this previous study, we use re = rs + d
so that relaxation occurs in a slightly larger area than the spot motion. The
vertical spot displacement is fixed to ∆z = 0.1d and the horizontal displace-
ments are set to ∆x = ∆y = 0.676d so that the spot diffusion rate b satisfies
the relationship 2b ∆z = ∆x2 = ∆y2.

Since the spot simulation is based on geometry alone and does not have to
accurately model individual particle contacts, it runs much faster than DEM:
draining the entire packing takes approximately eight hours to run as a serial
code on a Mac Pro system with a 2.67 GHz dual-core Intel Xeon processor.
The elastic relaxation process is the most time-intensive part of the simulation,
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(a) (b)

Fig. 3. Snapshots of the (a) DEM simulation and (b) event-driven spot simulations
at t = 60τ . The central slice of the packing is shown, by only plotting those particles
with y > 0. The two colors of particles are physically identical and initially form
layers of thickness 10d, and are used to highlight the flow and particle mixing that
takes place.

with a typical relax call taking 115 µs, which is about sixteen times slower than
a spot call, that takes 7.15 µs to run.

Figure 3 shows snapshots of the DEM and spot simulations at t = 60τ . De-
spite the two simulations being very different in running times, the overall
agreement is very high, with the colored bands of particles deforming simi-
larly. It should be borne in mind that the total flow rate and overall width
of the spot simulation were fitted from DEM, but the shape of the velocity
profile, and the individual particle mixing and rearrangement are reproduced
well. Although not discussed here, a quantitative study of these two simu-
lations showed good matches for velocity profiles, particle diffusion, spatial
velocity correlation functions, radial distribution functions, and bond angle
distribution functions (22).

Since spots can be thought of as carrying negative volume, it is interesting to
examine the local changes in packing fraction that occur during the simulation.
Figures 4(a) and 4(b) show plots of the local packing fraction in the DEM and
spot simulations respectively, computed using the Voronoi cell software library
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Voro++ (31). Initially the packing fraction is approximately 64% but during
flow this decreases to below 60%. The snapshots at t = 20τ show that the
front of lower densities propagates at a similar speed in the two simulations.
However, in DEM the areas of largest density drop are located at the sides,
in regions of highest shear, whereas in the spot model, the areas of highest
density drop are located the center, in regions of highest spot density and
velocity. However, it is interesting to observe that at later times when the flow
is developed, the regions of lower packing fraction are similar between spot
and DEM simulations.

2.1 Fixed timestepping

Since the spot model microscopic mechanism is local, it offers the possibility
of being coded efficiently in parallel, by carrying out many spot motions in
different parts of the container simultaneously. Several possible algorithms
have been implemented (20) that display modest parallel efficiency. However,
the main hurdle to these algorithms is to correctly implement the event-driven
nature of the spot motion: there are cases when a single spot may move several
times in quick succession, or where several spots may overlap with each other,
in which case the motions must be applied serially and the parallel efficiency
is diminished. Similarly, if the simulation is divided into separate regions, each
of which is controlled by a different processor that handles spots and particles
in that area, there are difficulties with correctly synchronizing the time.

Because of these difficulties, we therefore investigated whether the event driven
spot motion could be replaced with a fixed timestep, where all spots move after
an interval ∆t. To match the event-driven simulation, this timestep was chosen
to be the mean time between spot move events, 1/λ, and the number of spots
introduced at the orifice at each timestep followed a Poisson distribution with
parameter µ/λ. In this approach there is some freedom in what order the spot
motions are applied, and we considered two different methods: (a) applied in a
random ordering at each timestep, and (b) ordered according to the time they
were inserted, applying the newest spots first. The ordering of the spots could
potentially have a small effect on the particle motion. Method (a) is similar to
the event-driven procedure where the spot motions occur randomly. Method
(b) could potentially result in slightly different behavior, since by applying
the newer, lower spots first, there is slightly more free space available for the
particles above to move into. Simulations with both of these methods yield
almost identical results to the event-driven approach, and snapshots of the flow
are indistinguishable. Figure 4(c) shows Voronoi plots of the packing fraction
in a fixed timestep simulation using method (b). The front of lower density at
t = 20τ is almost identical to the event-driven case, and the behavior at later
times is very similar.
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Fig. 4. Plots of local packing fraction at two different times, for (a) the DEM
simulation, (b) the event-driven spot simulation, and (c) the fixed timestep spot
simulation. At each point, the local packing fraction is computed by finding all
particles within a distance of 2.2d of that point, and then dividing the total particle
volume by the total volume of their Voronoi cells. (For packing fractions in the
range 0%–50% near the orifice, the color is smoothly graded from white to red.)

We therefore think it is reasonable to conclude that both event-driven and
fixed timestepping approaches can be used in spot simulations. With a fixed
timestepping approach, it becomes feasible to write a fully distributed parallel
spot algorithm, where all spot and motions are taken care of locally, and a
master node is not required to keep track of the clock. We leave this as a
subject for future work, but expect that very high parallel efficiency could be
achieved. Our results also suggest that the precise ordering of spot motions
does not play a significant role. For a multicore spot algorithm, this suggests
that there may be some leeway in reordering spot motions while still achieving
similar results, allowing for further boosts in speed.
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3 Modeling the free surface

The simulations presented previously concentrated only on the particle flow
in the bulk, and as such, the free surface of the packing was omitted from
investigation and not shown. However, many situations arise where modeling
the free surface would be essential, and in this section, we show that it is
possible to modify the spot random walk process using methods that preserve
all of the flow properties in the bulk, but also give a realistic description
of the top of the packing. The free surfaces of granular materials have been
extensively studied (32; 33; 34), and it is well-known that the inclination of
the surface of a granular pile will not exceed a critical angle, referred to as
the angle of repose. In granular drainage, an initially flat surface will become
progressively more inclined towards the angle of repose as drainage occurs.
As shown in the DEM snapshot in figure 5(a), the yellow and cyan particles
near the top surface avalanche towards the center during flow. The unbiased
random walk process described in the previous section will not capture this
behavior, as the free surface will follow the mean velocity streamlines in the
bulk.

In the void model, the evolution of the free surface has been addressed by
making use of a very simple modification of the random walk process (11). In
the bulk of the packing, when a void generally has two particles in the lattice
points above it, the void moves to each of these sites with equal probability.
However, in the case when only one of these two sites is filled with a particle,
the void always moves in the direction of the particle. A void is only removed
from the simulation when both of the sites above it are vacant. This simple
modification suffices to create heaps and avalanching at the free surface, as
when a void reaches a heap, it travels diagonally upwards along the heap sur-
face. The angle of repose in this model is tied to the spacing of the underlying
lattice.

This, in effect, creates a simple biasing of the random walk: there are two
locations it can move to, and it chooses randomly among the available options.
This concept can be adapted to the spot model. Suppose a spot can move to
N different locations, and it would influence pi particles if it moved to location
i. Let q =

∑N
i=1 pi. If q = 0, remove the spot from the simulation. Otherwise,

let
P(Spot moves to i) =

pi

q
. (1)

In the bulk, where the density of the packing is almost constant, this does
not alter the random walk process by a large amount, but at the surface, the
motion of the spots is biased to create heaps. A snapshot of a spot drainage
simulation using this procedure is shown in figure 5(b), that qualitatively
captures the particle avalanching seen in DEM. However, the free surface
angle is too large, and furthermore it can be seen that particles near the top
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surface have become separated. This can be seen more clearly in figures 6(a)
& 6(b), which show close-up images of the the central slice of the packing.
Here, each particle is colored according to the packing fraction computed
from its Voronoi cell, revealing a large drop in density in the spot model.
This occurs because there is no explicit gravity in the spot model, so particles
which become separated during elastic relaxation events will remain separated.

A further modification to the spot model can be employed to correct for this.
In the previous implementation, when a spot moves by ~rs, then the particles
experience a displacement −w~rp, where w is a fixed quantity. Suppose that a
spot is going to influence p particles, each of volume Vp. If spots are thought of
as carrying a completely fixed amount of free volume Vs, then another possible
approach would be to let w = Vs/pVp, so the spot’s influence is divided equally
among the particles in range. In the bulk, where the particles are roughly
at constant density, this modification has little effect. However, at the free
surface, where p is lower, the spots give a larger downwards push, stopping
the particles from separating.

Two additional issues with this approach need to be addressed. First, the
weighting procedure can cause large gaps to open up near the orifice, due a
positive feedback effect, whereby lower density causes particles to exit faster,
lowering the density further. To avoid this, the weighting of the influence
function was switched off below z = 30d. Second, if the number of particles
within a spot’s range is very small, then those particles can experience a very
large displacement. An additional constraint was therefore implemented: if
p < 20, then the spot displacement was calculated based on p = 20. Physically,
this modification could be thought of as spots partially evaporating when
they get close to the top of the packing, so that their influence is weakened.
A snapshot of a simulation using this prescription is shown in figure 5(c),
and appears very promising. The free surface correctly forms heaps, and the
Voronoi computation of packing fraction in figure 6(c) shows that particles no
longer become separated at the free surface.

A further method of generalizing the spot random walk process was also ex-
plored, to directly modify the angle at which the free surface forms. Equation 1
is adapted to

P(Spot moves to i) =
pβ

i∑N
i=1 pβ

i

where β is a parameter that can be used to control the amount of biasing.
Figure 5(d) shows a snapshot of a simulation using β = 3, in addition to the
spot influence weighting, and figure 6(d) shows a close-up of the free surface,
with very good agreement to DEM. Values of up to β = 10 were tested, and
result in progressively shallower free surface slopes.

To track the time evolution of the free surface in these simulations, a simple

12



(a) (b) (c) (d)

Fig. 5. Snapshots of (a) DEM simulation, (b) a spot simulation using a random walk
with simple biasing, (c) a spot simulation using simple biasing and influence weight-
ing, and (d) a spot simulation using adapted biasing (with β = 3) and influence
weighting. The snapshots are taken at t = 300τ .

regression procedure was used to extract the surface angle. We define xj =
(2.5j − 1.25)d for j = 1, 2, . . . , 10. For a given particle snapshot, the values
zj are computed as the maximum particle z coordinate in the range ||x| −
xj| < 1.25d. The angle of the slope can then be computed by applying linear
regression on set of (xj, zj) points. Figure 7 shows the a plot of this angle for
the four simulations considered. The weighted spot simulation with β = 3 is
in good agreement with the DEM simulation, and can track a gradual increase
in the slope angle during flow.

4 Boundary layers

In many situations, dense granular flows can form boundary layers of slower
velocity near walls, and modeling these would be important for answering
certain practical questions, such as predicting particle residence-time distri-
butions. In this section, we show that the spot model has a natural mechanism
for handling this behavior, by tuning the distance dw that was introduced in
section 2, that sets how close a spot can come to a wall.

In the test geometry considered here, the most influential boundary layer
behavior occurs in the y direction, across the 8d width of the packing. Fig-
ure 8(a) shows the velocity profile in this direction in the central region of
flow, for DEM simulations with five different values of wall friction, µw. For
µw = 0.1 there is no boundary layer, while for µw = 0.3 a small boundary
layer is present, and for µw = 0.5, 0.7, 0.9 it becomes more pronounced.
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(a) (b)

(c) (d)

Fig. 6. Close-up snapshots of the free surface of the particle packings for the same
simulations in figure 5, for the region 50d < z < 90d. Each particle is colored
according to its local packing fraction, computed as the ratio of its volume to its
Voronoi cell volume. The central slice of the packing is shown by only plotting
particles with y > 0. The same color scheme is used as for figure 4.

In the spot simulations, the downwards velocity profile is given approximately
by the convolution of the spherical spot influence with the width over which
the spots move. (Additional motion from particle relaxation could also play a
role, although it can be expected that this is a less important effect.) Thus,
as dw decreases, and the spots are allowed to become progressively closer
to the wall, it should be expected that the boundary layer will be weakened.
Figure 8(b) shows the same cross sections for spot simulations with the default
value of dw = d, and three other values of dw, that confirms this. For dw = 0.5d
the spot simulation boundary layers are in reasonable agreement with those in
DEM for high wall friction values, although the very rapid drop in velocities
close to the wall is not well captured. In order to reproduce the low wall
friction case where no boundary layer is present, the best match is achieved
with dw = −1.5d, so that spots are allowed to significantly penetrate into the
wall.

While a simulation with a large wall penetration is still valid, it introduces an

14



0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

S
u
rf

ac
e

an
gl

e
(d

eg
re

es
)

t (units of τ)

DEM
Spot

Weighted spot
Weighted spot, β = 3

Fig. 7. Time evolution of the angle of the free surface, calculated using linear re-
gression, of the four simulations shown in figure 5.

additional complication. In determining the original spot model parameters,
the insertion rate λ is set by balancing the DEM particle outflow rate with
amount of displacement an individual spot causes. If a fraction of the total
number of spots are allowed to significantly drift out of the container then
they influence fewer particles and the total particle outflow rate is significantly
lowered. For the simulation with dw = −1.5d, the total particle outflow rate
is 106.8τ−1 over the time interval used in Fig. 8, whereas the outflow rate for
the DEM simulation used in the original parameter fitting was 131.1τ−1.

The spot influence weighting procedure discussed in the previous section,
where the particle displacements caused by a spot are scaled by the num-
ber of particles influenced, provides one method of circumventing this issue,
as each spot will always have equal influence. Another possible approach is to
set dw = 0, and then reflect the part of the spot’s influence that lies outside the
container back into the packing. More specifically, if a spot is at ~s = (sx, sy, sz)
with sy > 0, and there is a wall at y = 0, then the displacement on a particle
at ~x is scaled according to

S(~x) =


0 if |~x− ~s| ≥ rs

1 if |~x− ~s| < rs and |~x− (sx,−sy, sz)| ≥ rs

2 if |~x− ~s| < rs and |~x− (sx,−sy, sz)| < rs.

This procedure means that the total spot influence is uniform across the entire
width of the packing. For spots near edges between two walls, the reflection
procedure is applied for both walls. As shown in Fig. 8(b), the vertical velocity
profile is roughly uniform using this procedure, without the large drop in
particle flux seen in the dw = −1.5d simulation.

15



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

-4 -3 -2 -1 0 1 2 3 4
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Fig. 8. Normalized vertical velocity profiles across the width of the container, in the
test region x < 10d, 50d < z < 70d, over the time window 80τ < t < 180τ , for (a)
five different DEM simulations with different values of wall friction µw, and (b) five
different spot simulations with different values of dp, plus the reflection procedure.
For each simulation, the velocities are normalized by the average velocity Vz in the
test region, so that ṽz(y) = vz(y)/Vz.

With the ability to approximate boundary layers of slower flow, it is possible to
gain good estimates of particle residence-time distributions during a drainage
process. In previous work, it has been shown that a continuum analysis of
the kinematic model can be useful in predicting the tails of a the residence
time distribution (7), even without any careful treatment of the flow near
the boundaries. In the spot simulation, where the bulk flow is similar to the
kinematic model, and the boundary layers of slower flow can be approximated,
it will be possible to predict residence-time distributions to a higher degree of
accuracy.
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5 Infrequent relaxation

One of the most surprising aspects of the spot simulation is that addition
of the relaxation step, shown in figure 1(b), is enough to completely enforce
packing constraints. While the displacements introduced by the relaxation
step are based upon geometry alone with no details of the contact physics, and
typically are the order of 20% of the spot displacement, the radial distribution
function g(r) was exactly zero over the range 0 < r < 1 for the entirety of
the simulation, corresponding to no overlapped particles. Furthermore, over a
medium time interval, the spot model simulation was accurate enough to track
minuscule changes in g(r) and the bond angle distribution function g3(θ) that
were seen in DEM. This success can be largely attributed to the fact that the
particle displacement induced by a single spot motion is extremely small, on
the order of a hundredth of a particle diameter, so after each motion, only an
extremely small motion is required to fix packing constraints.

As discussed in section 2, even when efficiently implemented, the elastic re-
laxation step is the most time-consuming part of the simulation, requiring a
consideration of all neighboring pairs of particles, and can take approximately
sixteen times as long as a spot motion. Here, we ask whether it is possible
to apply relaxation less often and still recreate valid particle packings, as a
potential method of speeding up the code even further. While this will result
in a loss of accuracy, it may be appropriate for some situations, where we do
not require perfect random packings, but would still like the particles not to
suffer from large local buildups in density.

A series of simulations was carried out whereby the amount of relaxation
applied was reduced by a factor of k. For a given reduction factor, three
different methods were implemented:

(1) A local relaxation is applied after each step with probability 1/k, for
k = 10, 100, 1000.

(2) Each spot keeps an individual counter of the number of times it has
moved, and a local relaxation is applied after every kth motion, for k =
10.

(3) After a time ∆t = k/µ, when spots have each moved k times on average,
a global relaxation is applied, for k = 1, 10, 100.

It is not clear a priori whether methods 1 & 2 with local relaxations, or method
3 with global relaxations, would be more efficient in maintaining the quality
of the packing. By applying local relaxations infrequently, the possibility may
arise that some particles will not be part of any relaxation event for a long
period of time, but with periodic global relaxations, one is assured that all
particles will be considered equally often. However, the local relaxation proce-
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Relaxation method Relaxation ratio k trelax (s) B

Full relaxation 1 22446.4 0.00110

No relaxation – 0 0.501

Method 1 10 2359.23 0.00798

Method 1 100 244.4 0.0286

Method 1 1000 23.8 0.0871

Method 2 10 1629.81 0.00792

Method 3 1 261.1 0.0183

Method 3 10 28.0 0.0631

Method 3 100 2.8 0.171

DEM – – 0.00365

Fig. 9. Summary of the simulation runs considered making use of infrequent inelastic
relaxations. trelax refers to the total time spent in the relaxation routines. Also given
is an overall packing badness B, computed over 40τ < t < 160τ .

dures have the advantage that the amount of relaxation in a particular region
is proportional to the number of spot motions in that region. A summary of
the simulations considered and their running times is given in figure 9.

Figure 10 shows a selection of simulation snapshots during the flow, at t =
120τ . For the original simulation with full relaxation (a), the snapshot looks
very similar to DEM, with no visible evidence of overlapped particles. This
is in contrast to the simulation, with no relaxation shown in (d), where the
absence of any relaxation causes significant particle overlaps as the flow takes
place. In figures (b) and (c), the same snapshots are shown using method 1
relaxation for k = 100 and k = 1000 respectively. Despite the relaxation steps
being applied much less frequently, the particle packings appear to be in very
good agreement with the original case, and very little evidence of significantly
overlapped particles can be seen.

To investigate this quantitatively, the radial distribution function g(r) was
computed in the central region of flow, −15d < x < 15d, 15d < z < 45d over
all snapshots in the range 40τ < t < 200τ . Figure 11(a) shows the computed
curves for all of the spot simulations listed in figure 9. For the simulation with
full relaxation, there are no significantly overlapped particles: g(r) is iden-
tically zero over the range 0 < r < 0.9925d. The curve also has significant
peaks at r =

√
3d, 2d, due to local particle ordering, a behavior which closely

matches the corresponding DEM simulation. For the simulations with infre-
quent relaxation, the curves are less peaked, and part of the distribution is
present over the range 0 < r < 1d. However, it is clear that all the curves
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(a) (b) (c) (d)

Fig. 10. Snapshots at t = 120τ for (a) the original simulation, (b) the method 1
simulation with k = 100, (c) the method 1 simulation with k = 1000, and (d) the
simulation with no relaxation. The region −15d < x < 15d, 0 < z < 40d is shown,
and only particles with y > 0 are plotted, to view the central slice of the particle
packings.

with some relaxation are significantly more realistic than the case with no
relaxation, which has a large number of separations less than 1d, and has an
almost uniform distribution, as would be expected for randomly placed points
in a domain.

Figure 11(b) shows a semi-logarithmic plot of g(r) for small separations to
highlight the amount of overlapped particles. For the infrequently relaxed
simulations, there are some overlaps, although even with very little relaxation
the tails in g(r) do not significantly extend beyond 0.8d to 0.9d. To directly
compare the results of each simulation, an overall packing badness B is com-
puted for each simulation, based on the amount that particles are overlapped.
If a given particle i has ni overlapping contacts, and the overlap amounts are
specified by δi,j for j = 1, . . . , ni, the packing badness is computed as

B =
1

p

p∑
i=1

ni∑
j=1

δ2
i,j

d2
.

Here we consider all particles in the same region as the g(r) distributions, using
the same time interval. The results are shown in figure 9 and figure 12. For the
three different infrequent relaxations considered, there is a roughly one-to-one
relationship between the total simulation time spent on relaxation and the
packing badness, suggesting that the precise details of how the relaxation is
applied have little overall effect on the packing structure.

These results suggest that infrequent relaxation is a promising method of
speeding up a spot simulation. As discussed in section 2, a typical local relax-
ation step takes about sixteen times as long as a spot motion. Thus a simula-
tion will run an order of magnitude faster if relaxation is applied only a tenth
of the time, and at this level, the computed packing badnesses are very small,
and roughly comparable to DEM, where particles necessarily overlap to create
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Fig. 11. The radial distribution function g(r) for the spot simulations listed in
figure 9, computed in a central region of flow, −15d < x < 15d, 15d < z < 45d for
all snapshots over the range 40τ ≤ t ≤ 200τ . Part (a) shows the complete curves
for the range 0 < r < 4d, while part (b) shows a semi-logarithmic plot of the
region 0 < r < 1.5d, to highlight the part of the distributions that correspond to
overlapped particles.
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forces. Reducing the relaxation by a factor of a hundred or a thousand still
results in reasonable packings, although there is less practical justification for
using these, since at that level the total simulation time becomes dominated
by the spot motions.

6 Conclusion

In this paper, we have demonstrated a simple multiscale simulation technique
that is capable of modeling many features of granular drainage at a fraction
of the computational cost of DEM. The spot model microscopic mechanism
provides a reasonable description of particle flow and rearrangement in the
bulk, and in addition, we have shown that simple modifications to the simula-
tions can be used to model free surfaces and boundary layers. We believe that
the spot model may have applications in a large number of practical problems
where features of granular drainage must be estimated in real time. We envis-
age that the free parameters in the model could be initially estimated, either
from DEM simulation or from experimental data, and then used as a basis for
many spot simulations.

We have also demonstrated that the basic concept of breaking down a flow
into mesoscopic group displacements is robust, and that the physical results
do not depend strongly on the precise implementation. Both event-driven and
fixed timestep simulations yield largely similar results. One of the most sur-
prising conclusions of the simulations by Rycroft et al. (22) was that the simple
elastic relaxation step was good enough to preserve random packings, with no
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significantly overlapped particles, and here we have shown that even if relax-
ation is applied very infrequently, the random packings can still be reasonably
accurate. These results bode well for designing future spot-based algorithms,
as they point to a great deal of flexibility in the implementation. Since the
spot simulations are much quicker than DEM, and handle particle interactions
purely based on geometry as opposed to a detailed consideration of contact
dynamics, they offer the possibility of simulating problems that would be oth-
erwise infeasible with DEM. It would be possible to simulate several orders of
magnitude more particles than can currently be considered with DEM, and by
simulating polydisperse systems, it may be possible to understand the role of
geometric packing constraints on effects such as segregation. In the future, we
aim to extend this model to simulate elongated or irregular particles, whereby
the relaxation will also induce rotations on the particles, allowing for the study
of effects such as texturing under shear.

The largest limitation of the simulations presented here is that the technique
only applies to granular drainage problems where the kinematic model, with
diffusing vertical velocity profiles, is a good approximation. However, the basic
concept of breaking down a flow in a mesoscopic group displacements appears
to be generally applicable, and related work (23; 25) suggests that it may be
possible to link this mechanism of particle motion with a mechanical theory
of granular flow, to create a complete model. The microscopic particle mech-
anism may be a useful technique in studying other systems featuring dense
amorphous arrangements of particles, where co-operative particle motion (35)
is a frequently observed feature.
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